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We define and study a spin glass model based on a RG analysis of its random 
couplings. The Edwards-Anderson parameter shows a transition. 
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1. I N T R O D U C T I O N  

Spin-glass models still present something of a mystery: It is not exactly 
known what they should describe, and therefore it is not obvious what 
makes a spin-glass model "realistic" or "relevant." Certainly the review by 
Toulouse (1) vividly describes the ambiguous "situation in the field. We 
therefore feel free to add, or rather reemphasize, a commonly somewhat 
neglected aspect of the question: Namely, we want to view the spin-glass 
problem as a problem of the random variables describing the random 
couplings. In particular, we are interested in the behavior of the effective 
random coupling under a change of  scale. This will lead us naturally to a 
renormalization group (RG) approach. 

This description will become exact in the hierarchical approximation 
described below (see also Refs. 2 and 3), and we shall describe and study 
some aspects of the corresponding models which are random version of a 
Migdal-Kadanoff  type of recursion relation/4'5~ Alternatively our ap- 
proach leads us to a study of nonindependent (but not strongly coupled 
(mean-field(6))) random variables, and our results can be viewed as an 
example of nontrivial behavior in this field of mathematics. 
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The purpose of our paper is to describe and analyze a class of such 
models, and in particular to study the "evolution" of the effective random 
coupling as a function of the size of the lattice (Sections 1, 2, and 3). 

In Section 4, we shall then arrive at the proof of existence of  a 
spin-glass transition in the following sense. For a class of random interac- 
tions, we show that at high temperature the expected value of the spin is 

E(O))  = 0 

and 

e(<s~ 2) = 0 

where ( } denotes the partition sum and E( . )  denotes averaging over the 
sample space of random couplings. At low temperature, we have 

E( ( s} )  = 0 

but 

E(<s} 2) ~ 0 

indicating a transition of the Edwards-Anderson parameter. We are unable 
to locate a critical surface, although we can exhibit a critical fixed point. 

In order to study this question, we consider a simplifed model in a 
separate publication (v) in which the probability density p of the random 
coupling is replaced by a discrete sequence 

f l /2" ~p'X" o~ t ) + 0 ( -  x)) dx 

and the renormalization transformation is replaced by the simpler, but- -as  
we believe--qualitatively correct operator defining p', from p. by 

0'.= E 0~0q+8.000 ~ 
p+q=n+ l 

This operator, T { p , }  = (O',}, has two fixed points 

{p,} = { 1 , 0 , 0 , . . . ,  } ~ S c (low temperature) 

{p,} = {0, 1,0 . . . . .  } ~ S c (critical temperature) 

and a "stable" limit 

{p,) = {0,0 . . . .  , O, 1} = S  M (i.e., p~ = 1) (high temperature) 

We show among other things that only three fates can happen to a 
sequence under iteration by T. If it is S c it is a fixed point. Otherwise the 
sequence tends to S L or to S/4, and, most interestingly, there is a critical 
surface ~P, and every sequence on it (except Sc)  tends to SL. More 
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precisely, define f ( s ) =  ~ n = 0 & s  n. The  act ion of T on these generat ing 
funct ions is (Tf) (s)= ( f ( s )  2 - f (O)2) / s  + f ( 0 )  2. Then  the critical surface is 
given by  the equat ion f ( 2 ) -  2 f ' ( 2 ) =  0, while the h igh- tempera ture  (h.t.) 
region is f (2)  - 2f ' (2)  < 0, and  the low- tempera ture  region is f (2)  - 2f ' (2)  
> 0. No te  that  the speed with which the critical surface is left on the h.t. 
Side depends  on the initial distr ibution and  thus no critical indices are 
really defined. This m a y  account  for some of the difficulties encountered  in 
spin glasses. 

2. T H E  M O D E L S  

The models  we are considering have two equivalent  formulat ions:  One 
is based on a construct ion of M i g d a l - K a d a n o f f ,  (4'5) while the other  is 
based on the recursive d i a m o n d  shaped lattices (see Ref. 2). 

In  the first case, we consider a Z ~ lattice with an Ising spin at each site. 
In  this lattice, we single out  a direction, for  example  the first coordinate  
e =  ( 1 , 0 , . . . ,  0), and  we assume that  the system has side 2 u in the e 
direction and  2 N -  1 in the others. The  following descript ion should be 
easier to unders tand  by referring to Fig. 1. 

To  each (horizontal)  link of the fo rm i, i + e, i ~ ~d there is a r a n d o m  
coupling ~i. Below, we shall specify the nature,  i n d e p e n d e n c e , . . ,  of the 
r a n d o m  variables  ~i. There  are now two types of interact ion between the 
Ising spins. 

(i) The  interact ion energy between s i and  si+ e is ~i. 
(ii) Every hype r - "p l ane"  with fixed first coordinates  i I > 0 is part i-  

t ioned into 2 (u+l-r)(d-  I) hypercubes  of d imension  d - 1 and  of side 2 r - 1, 
where r is given by  

i 1 = 2 r + U 2 + �9 �9 �9 + 2% r < r 2 < r 3 < �9 �9 �9 < r k 

i 1 = 0 is handled  as i 1 = 2 N. There  is an infinite fe r romagnet ic  coupl ing in 
each hypercube,  i.e., all spins in one such hypercube  are equal. 

For  a fixed choice of the r a n d o m  variables ~" = {~i}, we denote  by  
H N (s, ~') the energy of the spin conf igurat ion s. The  Gibbs  density at inverse 
t empera tu re /9  is given by  

e x p [ - / g r i N  (s, ~) 1 
= 

E e x p [ - / g r i N  (s', t~) ] 
S t 

We are interested in the propert ies  of G N as a funct ion of /9 in the 
t h e r m o d y n a m i c  limit, N--~ oe. 

We  now give a second descript ion of the model ,  using a recursive 
bui ldup of a (hierarchical)  lattice. This formula t ion  has a natural  extension 
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i 1 0 1 2 3 4 5 6 7 8 

r 0 1 2 1 3 i 2 1 4 

Fig. 1. (a) Lattice for d = 2, N = 3, e horizontal. (b) Lattice for d = 3, N = 3, e horizontal. 

to noninteger dimensions, as we shall see. One first chooses an integer n > 1 
(one should think of n = 2 a -  l, in the first formulat ion of the model). The 
lattice is then formed recursively as follows. The first lattice is formed by 
two sites, and one link (see Fig. 2). 

We  call this L 0. If  Lp, p >/0, has been constructed, then Lp+ 1 is 
obtained by replacing each link by n sites and 2n links connect ing each 
new site to the two ends of the original link (see Fig. 3). 

We  now consider L N. To each site i (numbered in some suitable 
fashion) we associate an Ising spin, and to each link (i, j )  a r andom 
coupling constant  ~,.,). Again,  for each fixed choice of the r andom variables, 
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Fig. 2. One bond. 
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we can define 

= 

i , j  
(nearest neighbors) 

The Gibbs measure is defined as before. 
So far, we have said nothing about  the nature of the random variables, 

and the model still leaves us some freedom of choice. The most interesting 
choice is that of independent (identically distributed) random variables. We 
discuss this case in a separate publication. (s) The main difference of that 
variant as contrasted to the one presented below is the presence of frustra- 
tion. But it should be stressed that even in the simplified model of this 
paper, the absence of frustration is not the same as talking about a purely 
ferromagnetic interaction, as we shall see. Alternately, our model can be 
viewed as having random ferromagnetic interactions. 

The restriction we are going to make in this paper  is the following. In 
the Migda l -Kadanof f  version, the restriction is 

i.e., all random variables whose index i has the same first component  are 
equal. It is easy to give a similar formulation of this condition in the 
diamond version of the model; the details are left to the reader. 

| | ~, 

S S' 

s 1 

S v 
s 

s 
n 

Fig. 3. Increasing the level by one. 
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The point of the above models is that the Migdal renormalization 
transformation (s) is exact. 

3. RENORMALIZATION TRANSFORMATION 

In  this section, we establish Migdal's recursion relations, which are 
exact for the models we have described. Consider L~. The renormalization 
consists in summing over all spins introduced in the step leading from L N_ 
to L N . The resulting lattice L N_ 1 will have new effective (random) cou.pling 
constants. We now derive the formula for getting the new couplings ~ as a 

funct ion of the old ones. It is clearly sufficient to consider the following 
situation (see Fig. 4). 

We reemphasize that we want to sum over s 1 . . . .  , s~ and replace 

~ 1 , . . . ,  ~n,~] . . . .  , ~ by a new random variable g giving an effective 
coupling between s and s'. 

It  is useful to introduce the r andom variables x i = tanh(~/), x~ 
---tanh((~). Moreover, we shall assume that the inverse temperature has 
been absorbed in the definition of the (i. We then have to compute 

I = ~ f i  (e~"S'e ~/'s') 
S I ,  " �9 " , S n  i =  l 

= + 1  

= ~ 121 cosh~ i" cosh~;.  (1 + xissi)(l + x;s~s') 
s 1 . . . . .  s n i = l  

= + 1  

s 1 

s s ~ 

S 
n 

Fig. 4. Labeling one diamond. 
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The factors cosh ~i " cosh ~ will eventually disappear in the normalization of 
the partition function. We shall omit them henceforth. The quantity to 
study is thus 

leI E (1 + xy,)(1 + 
i = 1  si~•  

2" i cosh [ tanh- l(x,x/,) ] 

• fi {cosh[tanh-l(xix')] + sinh[tanh-l(xix')]ss '} 
i = 1  

__1) 1 1 I k tanh '(x, xf)ss'J = 2  n, cosh[tanh_,(x, xT)] exp 
"= i = 1  

=2.osh[ tanh=, l + tanh[ k tanh-l(xixf)] 

f i  cosh[ tanh-'(xix]) ] 
i = 1  

We again omit the factors which do not depend on s,s' (and which 
disappear in the normalization), and we get the transformation for the 4: 

~'= k tanh-l[ tanh(~i) tanh(~)]  
i = 1  

In the case of interest for this paper, the ~i are equal and so are the ~ [say, 
to (4, ~')] and we get 

~" = n tanh-~[ tanh(~)tanh(~') ] 

or, in terms of the x, 

It is useful to denote 

z = tanh[ ntahn-'(xx')] 

q,,(s) = tanh[ n tanh- ' (s)  ] 

I f  all the x i have probability density f, then the probability density of the 
renormalized coupling z will be 

l s qn-'(t) ) dx (3.1) 
[q'(q~-'(t))[ - ---7---v 

This transformation is the main object of study of our paper. 
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For completeness, we also give the renormalization of a correlation 
function, for one spin. This quantity is given by 

1 ~ sl I~ cosh(~i)cosh(~; )(1 + xissi)(1 + x;sis' ) f ( s ' ) =  7s ,  . . . . . . .  i=1 

1 2 ,2 �9 1 + tanh t anh-  (x ix  i)ss 
- -  X l X  1 i =  1 

(3.2) 

The identities (3.1) and (3.2) will allow us to compute explicitly the models 
L u by N-fold iteration, and we shall be able to take the thermodynamic 
limit. 

4. B E H A V I O R  U N D E R  R E N O R M A L I Z A T I O N  

In this section, we investigate the action of the renormalization trans- 
formation on the probability law (i.e., the probability density). 

It  is easy to verify that the transformation (3.1) has three fixed 
probability laws, given by 

60 

(8, + 8_,) /2 

and 

(6a, ' + 6 a , ) /2 ,  where qn(a~) = a~ 

We do not know whether there are other fixed points, but we conjecture 
that there are none. We now prove some results about  the basin of 
attraction of these three fixed points. Our analysis is not as complete as one 
could wish, but in the simplified case of ~v) we shall be able to get a picture 
which is probably the same as the one to be expected for the transforma- 
tion (3.1). 

We shall denote by x,~ the random coupling obtained after m steps of 
renormalization from x o. If x m denotes an independent identical copy of 
x,~, then x m +l is in fact nothing else than 

= q . ( x m  . 

We shall now study the limiting behavior of this recursion, and for this 
purpose, we state some preliminary estimates. Henceforth we shall fix n, 
and denote q = qn, a = an. We also define 

Pm(X) = Prob{[xml < x} 
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Lemma 4.1. The following inequalities hold: 
(Ei) One has Pm+I(X) >1 Pm(h(x)) 2, where h(x) = [q-l(x)]l/2. 
(Eii) If Pm(Y)=Pm(a) f o r y ) a  then 0 < x < a ,  implies Pm+I(X) 

) 2Pm(g(x))- P~(g(x)) 2, where g(x)= q l(x)/a. 
(Eiii) If Pm(y)=O for y < a ,  then, for a~< x <  1, Pm+l( x)< 

P~(g(x)) 2. 
(Eiv) If Pro(Y) = 0 for y < a, then, for a ~< x < 1, Pm+l(X) 

2Pm(h(x)). 
(Ev) Pm+I(X) >1 2Pm(q-l(X))- Pm(q-l(x)) 2. 

Proof. If we view Pm+l(X) as a double integration, over q(XmX~) 
~< X, then the five inequalities are straightforward consequences of restric- 
tions of these domains of integration. We visualize them graphically (see 
Fig. 5). �9 

We can now use these estimates to prove convergence. We shall 
consider only even distributions. 

Lemma 4.2. If x 0 ~ [ - a , a ] ,  almost surely, and Po(a-e )>  0 for 
some e > 0, then, almost surely x~ -~ 0 as m -~ ~v. 

Proof. We have Po(Y) -- Po(a) for y />  a by assumption, and since a 
is a repelling fixed point for q(zZ), this implies Pro(Y)= P~(a) for all m, 
and y />  a. Thus (Ei), (Eii) apply. 

x;~ 

q (xm x~): b 

1 Xm ~/q-1 (b) 
(a) 

Fig. 5. Integration regions.  
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/ 

q(XmX~)=b 

0 q-l(~ o 
- i f-  

(b) 

1 Xrn 

O ~  ct crl(b) 1 xm 
Q 

(c) 

Cont inued .  

q(xmx~)=b 

Fig. 5. 

For  x < a, we have 

Pm+2(x) = k(Pm(h o g(x) ) )  

where k ( z ) =  2z 2 -  z 4. The map z---~ k(z) has a stable fixed point  at 1, 

which attracts the interval (o, 1] where o = ( ~ / 5 -  1)/2. Note  also that 
g -1  o h -1  has a stable fixed point  at 0 which attracts [0, a). Therefore, for 
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X m 
0 a ,/q~(b) 1 

(d) 

x~, 

q (xmx~)=b 

q (XmX~}=b 

0 q'l(b) 1 xm 

(e) 

Fig. 5. Continued. 

x E [0, a)  we f ind  

Pm+2;(x) >1 Pm+2p(g-'o h-'(x)) >~ k(Pm+2(p_o(x)) 
> k (Pm(x)) 

T h u s  if Pro(x) > o, t hen  Pm+2p(x)-~ 1 a s p - ~  oo. 
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Consider  now l(x)= 2 x -  x 2. The m a p  z-~ l(z) has a stable fixed 
point  at 1, which at tracts  (0, 1]. Since Po(a) --/= 1, and  Ix01 < a a lmost  surely 
there is a y < a for which Pm(Y)g= O. Therefore,  there is an s for which 
l '(y) > a, and  hence, by  (Eli), for x = g - ' ( y ) ,  

Ps(X) >1 IS(po(y)) > a 

and hence, 

Ps+2p(x) --> 1 

Since Pm is monotone ,  and g(x) < x when x < a, we have 

Ps+ 2p( g-l(x))---> l 

But this implies, by (Eii), 

P~+2p l (x)  2 ~  1 

and  the l e m m a  follows. �9 
I t  is interesting to note that  Pp(y) in general will not converge 

monotonous ly  to 1, and  in fact the nature  of the convergence will depend 
very much  on the density of x 0. We  are confronted  with two opposing 
tendencies: L e m m a  4.1 tells us that  the weight of the density moves  toward 
0, but  it also gets smaller. All these facts will become  more  t ransparent  in 
the simplified model  of Ref. 7. They  are responsible for the absence of 
critical indices at  the critical surface. The  following l emma  is a sort of 
converse of L e m m a  4.2. 

Lemma 4.3. Assume ix0[ >/ a a lmost  surely and Po(a)~ 1. Then  
Ix ml ~ 1 a lmost  surely, as m ~ ~ .  

Proof. The  construct ion we give now has to go somewhat  back-  
wards. Let  a = Po(a). By assumption,  we have  a < 1. We  denote a '  = (1 + 
a ) / 2  ( <  1). Define s by 

(0/')2s < 2-(r+l) 

Choose  b > a such that  (i) q-l(b) < a, (ii) Po(gS(b)) < a ' ,  (iii) gS(b) < c, 
where c is the bounda ry  of the basin of a t t ract ion of h r o g. Such a b exists 
(it suffices to choose it sufficiently close to a). 

Assume now d E [a, 1), and  choose q such that  hq(d) < b. Then  we 
find, using (Eiv), 

Pq+m(d) ~ 2qPm(hq(d)) < 2qPm(b ) 

I t  suffices therefore to prove  that  Pm(b)--~O as rn--~ ~ .  By (ii) above  

P~(b) < eo(gS(b))2'< a 'Z~< 2 - ( r + ' )  
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Proof.  
therefore 

Applying alternately the two inequalities (Eiii) and (Eiv) we see that 

Ps+p(r+ I)(b) < Pp(r+ 1)(gS(b)) 2s 

< 2rp(p_,)(r+l)(h r~  g)((gS(b)))2~'2 

< 2"P( e -  1)(r+ l)(gS(b)) 2~'2 

since (iii) implies (h ~ o g)(gS(b))  < gS(b). Iterating, we get 

P,+p(,+ ,)(b) < 2 ~(2'- 1)(po(g~(b))2~) 2~ < 2 -  2r--> 0 

by (Eii) and (Eiii). Since h ( x )  < x, for x > a, and Pm is monotone, we have 

Ps+p(r+ I)+q(b) <~ es+p(r+ l)+q(h -(r-q+ l)(b)) 
<<. 2qPm+e(r+ll(b)-->O, for q = 0 . . . . .  r 

This completes the proof. �9 
We can now analyze easily the temperature dependence for a subclass 

of random variables ~0 and show that there is a phase transition, as far as 
the random couplings are concerned. We postpone to the next section the 
physical aspects of this transition. 

Theorem 4.4. Let ~0 be a random variable such that for some 71, 72, 

0 < r ,  < I 0l < r2 < 1, almost surely (a.s.) 

If the temperature T is sufficiently large, the associated sequence x m tends 
to zero, almost surely, while for T sufficiently small, ]Xml tends to 1 almost 
surely. 

By construction, we have x 0 = tanh(/3~0) with/3 = 1 / T ,  and 

tanh(fiT,) < Ix0[ "<< tanh(f172), a.s. 

Therefore, by Lemma 4.2, if fl < y2-1tanh - l(a), we have x m ->0 a.s., while, 
by Lemma 4.3, i ff l  > y l l t a n h - l ( a ) ,  then ]Xm]-+ 1, a.s. �9 

When ~0 is of the type described in Theorem 4.4, one could be tempted 
to identify the critical temperature as the largest temperature for which 
[tanh(fl(0)[ < a, a.s. This is, however, not the case, as can be shown by an 
explicit example, which we do not present here. [If [~o[ is a.s. constant, the 
critical temperature is characterized by [tanh(/3~0)1 = a, a.s.] 

We next discuss a more detailed issue--a description of the basin of 
attraction of x = 0. Our description is not complete, but it shows that the 
domain of attraction has a structure which is not very simple in the L 1 
topology. This is due to the nondifferentiability of the renormalization map 
in this space. 
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We present here the result only for the case n = 2, i.e., q = q2. Other 
cases are similar, and better constants can be read off the proof. 

Lemma 4.5. If, for some 0 < ~ -<< 1/128, one has P0(a) > 4a, then 
x m ~ 0 almost surely. 

Proof .  By the inequalities (Ei), (Ev), we have 

Pp+l+m(X)  >/ t) o b lP(em(q -p  o h ( x ) ) )  

where v ( z )  = z 2, u ( z )  = 2z - z 2. Below, we shall show that 

v o uP attracts 0-p/4 p, 11 to 1 (4.1) 

and Tp ~ 1 as p ~ ~ 0"3~ 1.45). 
On the other hand, since q ( x )  -- q2(x)  = 2x/ (1  + x2), we have q - l ( x )  

) x / 2  and h ( x ) ) ( x / 2 )  ~/2. Therefore, if x = 1 / 2  2p+~, then q - P  o h ( x )  
> x. Assume now 

e0(1/2 2p+l) > 2 -p/4p 
Then, setting x = 1/22p+I, we have 

G ( x )  v o Uqep(s_, (q-po h(x))) 

>> v o uP(Pp(s , ) (x ) )  ) (v  o u P ) S ( 2 ' r p / 4 e ) - - 1  

This implies by (Ei), 

Pp ,+ , (q (w2) )  >~ Pp,(w)---) 1 

But q(1/22e+~) 2 <2(22P+1) 2, and repeating this argument, we see that 
P m ( X ) ~  1 for all x > 0. It remains to prove (4.1). This is an easy conse- 
quence of the inequality, obtained by induction, 

uP(z )  >t 2Pz - 2p- ' (2  p _ 1)z 2 

and of 

v o uP(z )  >1 4Pz 2 - 4P(2 e - 1 ) z  3 

5. SPIN OBSERVABLES 

In this section, we investigate the behavior of the expectation of the 
spin when the "volume" of the lattice tends to infinity. We fix the values of 
the spin at the two extreme points of the lattice, thereby choosing the 
boundary conditions. If s is a spin which is not one of the above two, we 
shall denote by ( s )  its expectation for fixed boundary condition, and fixed 
values of the random couplings. We show that the expectation E ( ( s )  2) (i.e., 
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average over couplings) of <s> 2 satisfies 

E( ( s )2  ) ( = 0, at high temperature 
=/= 0, at low temperature 

and 

E(<s>) = 0 at all temperatures 

Note  that the above argument  shows a transition for the Edwards-  
Anderson (1,3) parameter.  We shall also see that the value of the Edwards-  
Anderson parameter  is independent of the boundary conditions. 

Consider the lattice L N and  a fixed spin variable s o which has been 
"created" at level N. The variable s o has two neighboring sites, exactly one 
of which has been created at level N - 1. We call it s I and we call the other 
neighbor s]. Considering now s I as a fixed spin in L N l, we find its 
neighbors s 2 and s~ in the same fashion as before, and continuing induc- 
tively, we find two chains S o , S  1 . . . . .  s N and so ,  s ' l , s  ~ . . . . .  s )  of spins. Note 
that all s i are distinct, but some of the sj may coincide. (See Fig. 6.) Note 

/ ! t also that either s m + 1 = Sm or s m + 1 = Sm" 

To these chains of spins, we associate functions of the form 

Fi(s  i , g )  = a i s  i -t- b ig  

where the ai ,  bi are real functions depending on the couplings x 0. We are 
interested in (F~(s~,s~)) [i.e., the canonical expectation of the observable 
F~(s~ , s j ) ] .  We have the following important identity: 

( A s  m + B s L >  = ( A ' s m +  1 + B'Sm+l> 

S o 

! 

s2 

s 3 
s 3 

Fig. 6. Labeling of the spins. 
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where 

and  

A ' = B + A  
xm(~ - x2)  

1 2 . r2 -- XrnA m 

~ ( 1  - Xm ~) 
B ' = A  

1 2 ,2 -- XmX m 

if sin+ 1 = s~ (5.1) 

Xm(1 - x,~) 
A ' = A  

1 2 ,2 
- -  X m X m  

' ' ( 5  2 )  if s m+ ! = s m 
x : ( 1 -  x 2)  

B ' = B + A  
1 2 t2 -- XmX m 

Here,  x,. and  x~ are two identical, independent  r a n d o m  couplings obta ined  
f rom x 0 through m-fold appl icat ion of the R G  t ransformat ion,  x., = 
t anh(T"~) .  The  above  identities are immedia te ly  obta ined  by induct ion 
when summing  over  all spins at level N - m. 

Namely ,  

(1 + X m S ~S m+, ) ( 1  + XmSmS~,+, ) = (1 + X m X ~ S m + l S ~ + l )  

( x~sm+,+x'j~+, ) 
• 1+  f g - - - , - - - - - r - -  sm 

X m X m S m +  1 S i n +  I 

and, summing  over  s~ (and taking the mean,  we get) 

( XmSm+l + X~S~+I  ) . ( A S m - t -  B s ~ )  
1 "~- t t Sm 

Sm 1 "1- XmXmSm+ lSm+ 1 

XrnSm+ 1 "~ X t S I ) 
= t m m+t 1 ..~ Bs ,  m 

A 1 + XmXmSm+lSm+l 

The  equations follow f rom s~ = Sin+ 1 (resp. = s,~+ 1). 
G iven  s o and  A o v ~ O, we therefore find, when B 0 = O, 

( A o S o )  = ( A l s  1 + B l s ~ )  
, ~ . 

= A n s  N + BNStN (5.3) 
where the A i, Bi are recursively ob ta ined  by  the above  relations, and  are 
r a n d o m  variables in all x j ,  x s = tanh(~j), tanh(~j) created above  level i. 

I _emma 5.1. E ( A , , B m )  = E ( A ~ )  = E ( B m )  = O. 
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Proof. We shall show below, recursively, that 

E ( A m x ~ f ( x ~ )  ) = E ( B m x , , f ( x 2 ) )  = 0 (5.4) 

for any function f. 
Using this result, and the induction rule for forming Am+ i from 

Z l m , B m ,  w e  get, in case Sm+ 1 = S m 

( t E(Am+, )  = E(Am) + E ~mXm - - ~ , 2  
1 - -  X m X  m 

the assertion E(Am+t) = 0 follows. Similarly, E(Bm+I) = 0. from which 
Finally, 

1-x  ) 
E(Am+tB,~+t) = E AmBmx' ~ 1 --~__,2 

- -  X m X  m 

1 t2 2,, 2 
X m X m )  

by (5.1). It remains to prove (5.4). But this is obvious since 

= ,x  m_ , ~ ( x m _  , , X m - , ) )  E(AmX,d~(X2m)) E(Am - 2 ,2 

where 
r X 2 XJ2 ~ __ X 2 ~2 ~ 2 

I m - - l ,  m - - l ] -  m - l (  1 - -  X m - 1 ) f ( q n ( X m - l X m - l )  ) 

and so the result follows by induction. �9 
We next show recursively that 

Am+lBm+lxm+ l >1 0 a.s. 

Indeed, this follows again by induction, if we use 

, __ X m ) X  m x m A m B m x m  ( l  2 
A m + l B m + l X m + l  - 1 2 ,2 2 

- -  XmXrn  X m 

+ (1 -  x )(1 - xg) 
t 

2 CI"(XmXm) 
X m 

>10 
since Xmx~q,(xmx~,) >1 0 and A,~Bmx,, >1 O, a.s. 

Therefore, 

[Xml + IX;.I 
IAm+~[ + IB'~+~I = {Aml + IBml 1 + ]XmXml 

as is easily seen. 

qo(XmX'~) 

= 0  

(5.5) 
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Assume n o w  IXm]-~ 1, exponentially fast (this certainly happens for the 
x o of Theorem 4.4). 
Then 

IAml + IBml/> (lAd + IB01)const, 

by (5.5) and this (positive) constant does not depend on m. If we set A 0 = 1, 
B 0 = 0, and we now take m = N, we obtain 

! ! 

~SO~ = ~ANS N "4- BNSN~ = ANS N + BNS N 

From Lemma 5.1 this implies E((so~ ) = 0. On the other hand, 

E(<s0> 2) = E(A~. + B. ~ ) + E(ANBN )sNs'~ 

= E(A~ + B~ ) > ~E((IA~I + IBNI) 2) > 0 

Hence we have shown for any fixed SN, S' u the following: 

T h e o r e m  5.2. If IXml ~ 1 or 0 a.s. exponentially fast then 

E(O>) = 0 

E((s~ 2) has a limit which is not zero if ]Xml-~ 1 and zero otherwise. 
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